scirpy.pl.clonal_expansion¶
-
scirpy.pl.
clonal_expansion
(adata, groupby, *, target_col='clone_id', clip_at=3, expanded_in=None, summarize_by='cell', normalize=True, show_nonexpanded=True, viztype='bar', **kwargs)¶ Visualize clonal expansion.
`Visualize clonal expansion.
Plots the fraction of cells that belong to an expanded Clonotype by a categorical variable.
If
summarize_by
is set to “clone_id” it plots the fraction of clonotypes instead of the fraction of cells.Removes all entries with
NaN
intarget_col
prior to plotting.- Parameters
- adata :
AnnData
AnnData
AnnData object to work on.
- groupby :
str
str
Group by this categorical variable in
adata.obs
.- target_col :
str
str
(default:'clone_id'
) Column in
adata.obs
containing the clonotype information.- clip_at :
int
int
(default:3
) All entries in
target_col
with more copies thanclip_at
will be summarized into a single group.- expanded_in :
str
|None
Optional
[str
] (default:None
) Calculate clonal expansion within groups. To calculate expansion within patients, set this to the column containing patient annotation. If set to None, a clonotype counts as expanded if there’s any cell of the same clonotype across the entire dataset. See also Public clonotype.
- summarize_by : {‘cell’, ‘clone_id’}
Literal
[‘cell’, ‘clone_id’] (default:'cell'
) Can be either
cell
to count cells belonging to a clonotype (the default), orclonotype
to count clonotypes. The former leads to a over-representation of expanded clonotypes but better represents the fraction of expanded cells.- normalize :
bool
bool
(default:True
) If True, compute fractions rather than reporting abosolute numbers.
- show_nonexpanded :
bool
bool
(default:True
) Whether or not to show the fraction of non-expanded cells/clonotypes
- viztype : {‘bar’, ‘barh’}
Literal
[‘bar’, ‘barh’] (default:'bar'
) bar
for bars,barh
for horizontal bars.- **kwargs
Additional arguments passed to
scirpy.pl.base.bar()
- adata :